
Unit 4 WS 4 Calculus 1

Find the intervals on which the graph of f is increasing, decreasing, concave upward, and concave downward. Find the coordinates of any local extrema and point of inflection. Sketch the graph.

3. $f(x) = x^2 - 8x - 9$

f'(x) =	
Critical Points:	
Increasing:	
Decreasing:	
Local Max(s):	
Local Min(s):	

f''(x) =	
Critical Points:	
Concave Up:	
Concave Down:	
Pt(s) of inflection:	
Concave Down:	

4. $f(x) = x^4 - 4x^3 + 2$

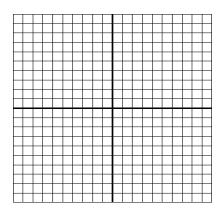
	_	_	_	_	_	_	 _	_	_	_	_	_	_	_	_	_	_	_
																		Г
																		Γ
																		F
																		t
																		t
																		F
																		F
																		┢
	-	-			-				-			-						╞
-	-	-			-		-		-			-						┝
-	-	-			-				_			-						┝
_		_							_									┝
_							-		_									⊢
									_									

f'(x) = Critical Points: Increasing: Decreasing: Local Max(s): Local Min(s):

5. $f(x) = -x^4 + 6x^2 - 4$

f''(x) =

Critical Points:	
Concave Up:	
Concave Down:	
Pt(s) of inflection:	


_	 -		-						 -	-
	 -		-						-	-
									-	-
								_		

f'(x) =	
Critical Points:	
Increasing:	
Decreasing:	
Local Max(s):	
Local Min(s):	
. ,	

6.
$$f(x) = x^{\frac{2}{8}} + 3$$

c "	< >	
t I	(x)	=

Critical Points:	
Concave Up:	
Concave Down:	
Pt(s) of inflection:	

f'(x) =	
Critical Points:	
Increasing:	
Decreasing:	
Local Max(s):	
Local Min(s):	

f''(x) =